据介绍,天宫二号搭载的冷原子钟完成了全部既定在轨测试任务,成功验证了在空间环境下高性能冷原子钟的运行机制与特性,同时实现了天稳7.2×10-16的超高精度,3000万年误差小于1秒。这一成果将目前人类在太空的时间计量精度提高了一至两个数量级,为空间超高精度时间频率基准的重大需求以及未来空间基础物理前沿研究奠定了坚实的科学与技术基础。
在微重力环境下运行高精度原子钟,是一个重大挑战。中国科学院上海光机所的科研人员在量子频标和冷原子物理等研究积累的基础上,经过10余年的攻关,突破了微重力环境下运行的冷原子钟物理系统、长期自主运行的冷原子制备与操控激光光学系统、铷原子钟超低噪声微波频率源等一系列关键技术。在空间微重力环境下利用激光把铷原子温度降低到接近绝对零度,利用激光和高精度微波场对制备的冷原子进行操纵和探测,提取出铷原子高稳定的能级跃迁频率作为高精度原子钟信号,在国际上首次实现冷原子钟的在轨稳定运行。
这种能在空间环境下可靠运行的高精度原子钟应用于导航定位系统将会提升系统自主运行能力、提高导航定位精度,在基础物理研究方面,对推进基本物理常数测量、广义相对论验证等的发展具有重要意义。此外,空间冷原子钟相关技术还将会应用于空间量子传感器等多个领域。